Microwave photonics combines two worlds | Nature Photonics

  1. Seeds, A., Lee, C. H., Funk, E. & Nagamura, M. Guest column : Microwave photonics. J. Lightwave Technol. 21, 2959–2960 ( 2003 ) .
  2. Seeds, A. Microwave photonics. IEEE Trans. Microwave Theory Tech. 50, 877–887 ( 2002 ) .
  3. Seeds, A. J. in Proc. IEEE Int. Topical Meeting Microwave Photon. Oqunquit, Maine, USA 16–19 ( 2004 ) .
  4. Tucker, R. S. & Pope, D. J. Microwave circumference models of semiconductor device injection lasers. IEEE Trans. Microwave Theory Tech. 83, 289–294 ( 1983 ).
  5. Ralston, J. D. et aluminum. Control of differential addition, nonlinear profit, and damping factor for high-speed application of GaAs-based MQW lasers. IEEE J. Quant. Electron. 29, 1648–1659 ( 1993 ) .
  6. Matsui, Y., Murai, H., Arahira, S., Kutsuzawa, S. & Ogawa, Y. 30-GHz bandwidth 1.55-μm strained-compensated InGaAlAs–InGaAsP MQW laser. IEEE Photon. Technol. Lett. 9, 25–27 ( 1997 ) .
  7. Nagarajan, R., Levy, S. & Bowers, J. E. Millimeter wave narrowband optical fiber links using external cavity semiconductor lasers. J. Lightwave. Technol. 1, 127–136 ( 1994 ) .
  8. Lim, C., Nirmalathas, A. & Novak, D. Techniques for multi-channel data transmission using a multi-section laser in millimeter-wave fiber-radio systems. IEEE Trans. Microwave Theory. Tech. 47, 1351–1357 ( 1999 ) .
  9. Bach, L. et aluminum. Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design. Electron. Lett. 39, 1592–1593 ( 2003 ) .
  10. Meng, X. J., Chau, T. & Wu, M. C. Experimental demonstration of transition bandwidth enhancment in spread feedback lasers with external light injection. Electron. Lett. 34, 2031–2032 ( 1998 ) .
  11. Lau, E. K., Sung, H. K. & Wu, M. C. in Proc. IEEE Opt. Fiber Commun. Conf. Anaheim, California, USA OThG2 ( 2006 ) .
  12. Chrostowski, L. et aluminum. 50-GHz optically injection-locked 1.55-μm VCSELs. IEEE Photon. Technol. Lett. 18, 367–369 ( 2006 ) .
  13. Dolfi, D. W. & Ranganath, T. R. 50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section. Electron. Lett. 28, 1197–1199 ( 1992 ) .
  14. Noguchi, K., Mitomi, O. & Miyazawa, H. Millimeter-wave Ti : LiNbO3 ocular modulators. J. Lightwave Technol. 16, 615–619 ( 1998 ) .
  15. Walker, R. G. in Proc. 8th IEEE LEOS Meeting. Sydney, Austrailia 118–119 ( 1995 ) .
  16. Spickermann, R., Sakamoto, S. R., Peters, M. G. & Dagli, N. GaAs/AlGaAs traveling wave electro-optic modulator with electric bandwidth greater than 40 GHz. Electron. Lett. 32, 1095–1096 ( 1996 ) .
  17. Chen, D. et aluminum. demonstration of 110 GHz electro-optic polymer modulators. Appl. Phys. Lett. 70, 3335–3337 ( 1997 ) .
  18. Ido, T. et alabama. Ultra high-speed multiple quantum well electroabsorption ocular modulators with incorporate waveguides. J. Lightwave Technol. 14, 2026–2034 ( 1996 ) .
  19. Mineo, N., Yamada, K., Nakamura, K., Sakai, S. & Ushikobo, T. in Proc. IEEE Opt. Fiber Commun. Conf. San Jose, California, USA 287–288 ( 1998 ) .
  20. Zhang, S. Z., Chiu, Y. J., Abraham, P. & Bowers, J. E. 25 GHz polarization insensitive electroabsorption modulators with travelling wave electrodes. IEEE Photon. Technol. Lett. 11, 191–193 ( 1999 ) .
  21. Akage, Y. et alabama. Wide bandwidth of over 50 GHz travelling-wave electrode electroabsorption modulator integrated DFB lasers. Electron. Lett. 37, 299–300 ( 2001 ) .
  22. Wey, Y. G. et aluminum. 110-GHz GaInAs/InP double heterostructure p-i-n photodetectors. J. Lightwave Technol. 13, 1490–1499 ( 1995 ) .
  23. Ümbach, A., Trommer, D., Mekonnen, G. G., Ebert, W. & Unterbörsch, G. Waveguide integrated 1.55-μm photodetector with 45 GHz bandwidth. Electron. Lett. 32, 2143–2145 ( 1996 ) .
  24. Giboney, K. S. et alabama. Travelling-wave photodetectors with 172-GHz bandwidth and 76-GHz bandwidth-efficiency product. IEEE Photon. Technol. Lett. 7, 412–414 ( 1995 ) .
  25. Ishibashi, T. et aluminum. Uni-traveling-carrier photodiodes. Tech. Dig. Ultrafast Electron. Optoelectron. 83–87 ( 1997 ) .
  26. Ishibashi, T., Fushimi, H., Ito, H. & Furuta, T. High ability uni-travelling-carrier photoiodes. Proc. Int. IEEE Topical Meeting Microwave Photon. Melbourne, Austrailia 75–78 ( 1999 ) .
  27. Ito, H., Furuta, T., Muramoto, Y., Ito, T. & Ishibashi, T. Photonic millimetre- and sub-millimetre-wave generation using J-band rectangular-waveguide-output uni-travelling-carrier photodiode module. Electron. Lett. 42, 3033–3034 ( 2006 ) .
  28. Seeds, A. J. & de Salles, A. A. A. Optical dominance of microwave semiconductor devices. IEEE Trans. Microwave Theory Tech. 38, 577–585 ( 1990 ) .
  29. Novak, D. et alabama. in Microwave Photonics 157–184 ( CRC–Taylor and Francis, Boca Raton, Florida, USA, 2007 ) .
  30. Chiddix, J. A., Laor, H., Pangrac, D. M., Williamson, L. D. & Wolfe, R. W. AM video on fiber in CATV systems : need and execution. IEEE J. Sel. Areas Commun. 8, 1229–1239 ( 1990 ) .
  31. Rivas, I. & Lopes, L. B. in Proc. IEEE Vehic. Technol. Conf. Ottawa, Canada 1395–1399 ( 1998 ) .
  32. Casini, A. & Faccin, P. in Proc. IEEE Int. Topical Meeting Microwave Photon. Budapest, Hungary 123–128, ( 2003 ) .
  33. Qian, X., Hartmann, P., Ingham, J. D., Penty, R. V. & White, I. H. Directly-modulated photonic devices for microwave applications. Proc. IEEE MTT-S Intl Microwave Symp. Long Beach, California, USA ( 2005 ) .
  34. Chia, M. Y. W., Luo, B., Lee, M. L. & Hao, E. J. Z. Radio over multimode fiber infection for wireless LAN using VCSELs. Electron. Lett. 39, 1143–1144 ( 2003 ) .
  35. Persson, K. -Å. et alabama. WCDMA radio-over-fiber transmission experiment using singlemode VCSEL and multimode fiber. Electron. Lett. 42, 372–374 ( 2006 ) .
  36. Smith, G. H., Novak, D. & Ahmed, Z. technique for ocular SSB generation to overcome distribution penalties in fibre-radio systems. Electron. Lett. 33, 74–75 ( 1997 ) .
  37. Lim, C., Novak, D., Nirmalathas, A. & Smith, G. H. Dispersion-induced baron penalties in millimeter-wave signal transmission using multi-section DBR semiconductor device lasers. IEEE Trans. Microwave Theory Tech. 49, 288–296 ( 2001 ) .
  38. Marti, J., Fuster, J. M. & Laming, R. I. experimental reduction of chromatic distribution effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fiber gratings. Electron. Lett. 33, 1170–1171 ( 1997 ) .
  39. Kitayama, K. Fading-free transport of 60 GHz optical DSB sign in non-dispersion shifted fiber using chirped fiber grate. Proc. IEEE Int. Topical Meeting Microwave Photon. Princeton, New Jersey, USA 223–226 ( 1998 ) .
  40. O’Reilly, J. J. et aluminum. RACE R2005 : Microwave optical duplex house antenna link. IEE Proc. J 140, 385–391 ( 1993 ) .
  41. Park, J. & Lau, K. Y. Millimetre-wave ( 39 GHz ) fibre-wireless transmittance of broadband multichannel compressed digital video. Electron. Lett. 32, 474–476 ( 1996 ) .
  42. Noël, L., Marcenac, D. & Wake, D. 120 Mbps QPSK radio-fiber infection over 100 km of standard roughage at 60 GHz using a master/slave injection locked DFB laser source. Electron. Lett. 32, 1895–1897 ( 1996 ) .
  43. Smith, G. H., Novak, D., Lim, C. & Wu, K. Full-duplex broadband millimetre-wave ocular transportation system for fiber radio receiver access. Electron. Lett. 33, 1159–1160 ( 1997 ) .
  44. Braun, R. P. et aluminum. in Proc. IEEE MTT-S Int. Microwave Symp. Denver, Colorado 225–228 ( 1997 ) .
  45. Von Helmolt, C. H., Krüger, U., Krüger, K. & Groβkopf, G. A mobile broad-band communication system based on mode-locked lasers. IEEE Trans. Microwave Theory Tech. 45, 1424–1430 ( 1997 ) .
  46. Stöhr, A., Kuri, T., Kitayama, K., Heinzelmann, R. & Jäger, D. Full-duplex 60 GHz fiber ocular transmittance. Electron. Lett. 35, 1653–1655 ( 1999 ) .
  47. Lim, C., Nirmalathas, A., Novak, D., Waterhouse, R. & Ghorbani, K. in Proc.IEEE MTT-S Int. Microwave Symp. Anaheim, California, USA 1201–1204 ( 1999 ) .
  48. Haisch, H. & Pfeiffer, T. in Proc. IEICE Int. Topical Workshop Contemp. Photon. Technol. 17–20 ( 2000 ) .
  49. Ogawa, H., Tsuji, H. & Hirakawa, M. in Proc. IEEE MTT-S Int. Microwave Symp. Anaheim, California, USA 1213–1216 ( 1999 ) .
  50. Choi, C. S. et alabama. 60-GHz bidirectional radio-on-fiber links based on InP/InGaAs HPT optoelectronic mixers. IEEE Photon. Technol. Lett. 17, 2721–2723 ( 2005 ) .
  51. Toda, H., Yamashita, T., Kitayama, K. & Kuri, T. A DWDM mm-wave fiber-radio organization by ocular frequency interleaving for high spectral efficiency. Proc. IEEE Int. Topical. Meeting Microwave Photon. Awaji, Japan 85–88 ( 2002 ) .
  52. Lim, C., Nirmalathas, A., Attygalle, M., Novak, D. & Waterhouse, R. On the confluence of millimeter-wave fiber-radio backbone with 25 GHz WDM ring networks. J. Lightwave Technol. 21, 2203–2210 ( 2003 ) .
  53. Nakasyotani, T., Toda, H., Kuri, T. & Kitayama, K. Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum inner light source. J. Lightwave Technol. 24, 404–410 ( 2006 ) .
  54. Martinez, A., Polo, V. & Marti, J. coincident baseband and RF optical intonation scheme for feeding wires and wireline heterogenous access network. IEEE Trans. Microwave Theory Tech. 49, 2018–2024 ( 2001 ) .
  55. Ikeda, K., Kuri, T. & Kitayama, K. Simultaneous three-band modulation and fiber-optic transmittance of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength. J. Lightwave Technol. 21, 3194–3202 ( 2003 ) .
  56. Lim, C., Lee, K. L., Nirmalathas, A., Novak, D. & Waterhouse, R. Optical interface for IMD decrease in fiber-radio systems with coincident baseband infection for heterogeneous access networks. Proc. IEEE Opt. Fib. Commun. Conf. Anaheim, California, USA ( 2007 ) .
  57. Wake, D., Johansson, D. & Moodie, D. G. Passive pico-cell – A new concept in radio network infrastructure. Electron. Lett. 33, 404–406 ( 1997 ) .
  58. Kitayama, K. et alabama. An border on to single ocular component antenna basal stations for broad-band millimeter-wave fiber-radio access systems. IEEE Trans. Microwave Theory Tech. 48, 2588–2595 ( 2000 ) .
  59. Kuri, T., Kitayama, K. & Takahashi, Y. in Proc. IEEE Int. Topical Meeting Microwave Photon. Melbourne, Austrailia 123–126 ( 1999 ) .
  60. Nirmalathas, A., Novak, D., Lim, C. & Waterhouse, R. B. Wavelength re-use in the WDM optical interface of a millimeter-wave fiber wireless antenna base-station. IEEE Trans. Microwave Theory Tech. 49, 2006–2012 ( 2001 ) .
  61. Ong, L. C., Yee, M. L. & Luo, B. in Proc. IEEE LEOS Ann. Meet. Montreal, Canada 522–523 ( 2006 ) .
  62. Koepf, G. A. Optical processor for phase array antenna beamformation. Proc. SPIE 477, 75–81 ( 1984 ) .
  63. Dolfi, D., Michel-Gabriel, F., Bann, S. & Huignard, J. P. Two-dimensional optical architecture for time-delay radio beam form in a phase array antenna. Opt. Lett. 6, 255–257 ( 1991 ) .
  64. Ng, W. et aluminum. The first demonstration of an optically steered microwave phased array antenna using true-time-delay. IEEE J. Lightwave Technol. 9, 1124–1131 ( 1991 ) .
  65. Benjamin, R. & Seeds, A. J. Optical glow forming techniques for phase array antenna. IEE Proc. H 139, 526–534 ( 1992 ) .
  66. Konishi, Y., Chujo, W. & Fujise, M. Carrier-to-noise ratio and sidelobe level in a two-laser mannequin optically controlled array antenna using Fourier optics. IEEE Trans. Ant. Propagat. 40, 1459–1465 ( 1992 ) .
  67. Riza, N. Liquid crystal-based optical master of phased-array antenna. J. Lightwave Technol. 10, 1974–1984 ( 1992 ) .
  68. Esman, R. D. et alabama. fiber-optic prism true time-delay antenna feed. IEEE Photon. Technol. Lett. 5, 1347–1369 ( 1993 ).
  69. Molony, A., Edge, C. & Bennion, I. Fibre diffraction grating time delay element for phase array antenna. Electron. Lett. 31, 1485–1486 ( 1995 ) .
  70. Frankel, M. Y. & Esman, R. D. True time-delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability. IEEE Trans. Microwave Theory Tech. 43, 2387–2394 ( 1995 ) .
  71. Ji, Y., Inagaki, K., Miura, R. & Karasawa, Y. Optical central processing unit for multibeam microwave align antenna. Electron. Lett. 32, 822–824 ( 1996 ) .
  72. Tong, D. T. K. & Wu, M. C. A fresh multiwavelength optically controlled phase array antenna with programmable dispersion matrix. IEEE Photon. Technol. Lett. 8, 812–814 ( 1996 ) .
  73. Paul, D. K., Razdan, R., Markey, B. J. & Takats, P. Optical shine form and guidance architectures for satcom phased-array antenna. Dig. IEEE Ant. Propagat. Symp. 2, 1508–1511 ( 1996 ) .
  74. Zmuda, H., Soref, R., Payson, P., Johns, S. & Toughlian, E. N. Photonic beamformer for phase array antennas using fiber grating prism. IEEE Photon. Technol. Lett. 9, 241–243 ( 1997 ) .
  75. Román, J. E., Frankel, M. Y., Matthews, P. J. & Esman, R. D. Time-steered align with a tweedle grating beamformer. Electron. Lett. 33, 652–653 ( 1997 ) .
  76. Ji, Y., Inagaki, K., Shibata, O. & Karasawa, Y. Beam formation by using optical signal work techniques. Dig. IEEE Ant. Propagat. Symp. 2, 739–742 ( 1997 ) .
  77. Corral, J. L., Martí, J. & Fuster, J. M. in Dig. IEEE Microwave Theory Tech. Symp. Baltimore, Maryland, USA 1379–1382 ( 1998 ) .
  78. Stulemeijer, J., Maat, D. H. P., Moerman, I., Van Vliet, F. E. & Smit, M. K. Photonic integrated beamformer for a phase array antenna. Proc. Europ. Conf. Opt. Commun. Madrid, Spain 637–638 ( 1998 ) .
  79. Kuhlow, B. et alabama. in Proc. IEEE Opt. Fiber Commun. Conf. Atlanta, Georgia, USA 732–734 ( 2003 ) .
  80. Vidal, B. et alabama. Simplified WDM ocular beamforming network for large antenna arrays. IEEE Photon. Technol. Lett. 18, 1200–1202 ( 2006 ) .
  81. Vidal, B., Mengual, T., Ibáñez-López, C. & Martí, J. Optical beamforming network based on fiber-optical check lines and spatial light modulators for bombastic antenna arrays. IEEE Photon. Technol. Lett. 18, 2590–2592 ( 2006 ) .
  82. Hall, P. in Proc. Aust. Acad. Sci. Applicat. Radio Sci. Workshop. Beechworth, Austrailia 41–46 ( 2000 ) .
  83. Payne, J. P. & Shillue, W. P. in Proc. IEEE Int. Topical Meeting Microwave Photon. Awaji, Japan 9–12 ( 2002 ) .
  84. Minasian, R. A. Photonic signal process of microwave signals. IEEE Trans. Microwave Theory Tech. 54, 832–846 ( 2006 ) .
  85. Capmany, J., Ortega, B., Pastor, D. & Sales, S. Discrete-time optical action of microwave signals. J. Lightwave Technol. 23, 702–723 ( 2005 ) .
  86. Kitayama, K. Architectural considerations of fiber-radio millimeter-wave radio access systems. J. Fib. Integ. Opt. 19, 167–186 ( 2000 ) .
  87. curate, D., Ortega, B., Capmany, J., Fonjillaz, P.-Y. & Popov, M. Tunable microwave photonic filter for noise and hindrance inhibition in UMTS base stations. Electron. Lett. 40, 997–999 ( 2004 ) .
  88. Sugiyama, T., Suzuki, M. & Kubota, S. An integrate interference supression scheme with adaptive counterweight for digital satellite communication systems. IEICE Trans. Commun. E79-B, 191–196 ( 1996 ) .
  89. Skolnik, M. I. Introduction to Radar Systems ( McGraw-Hill, New York, 1980 ) .
  90. Zmuda H. & Toughlian, E. N. Photonic Aspects of Modern Radar ( Artech House, Boston, 1994 ) .
  91. Jackson, K. et aluminum. ocular fiber delay-line signal process. IEEE Trans. Microwave. Theory Tech. 33, 193–204 ( 1985 ) .
  92. Hunter, D. B. & Minasian, R. A. Tunable cross filter based on tweedle gratings. Electron. Lett. 31, 2205–2207 ( 1995 ) .
  93. Hunter, D. B. & Minasian, R. A. Tunable microwave fiber-optic bandpass filters. IEEE Photon. Technol. Lett. 11, 874–876 ( 1999 ) .
  94. You, N. & Minasian, R. A. A fresh high-Q ocular microwave central processing unit using loanblend delay line filters. IEEE Trans. Microwave Theory Tech. 47, 1304–1308 ( 1999 ) .
  95. You, N. & Minasian, R. A. High-Q ocular microwave filter. Electron. Lett. 35, 2125–2126 ( 1999 ) .
  96. Yu, G., Zhang, W. & Williams, J. A. R. High-performance microwave cross filter using fiber Bragg scrape arrays. IEEE Photon. Technol. Lett. 12, 1183–1185 ( 2000 ) .
  97. Zhang, W., Williams, J. A. R. & Bennion, I. Optical fiber recirculating stay line incorporating a fiber grating range. IEEE Microwave Wireless Compon. Lett. 11, 217–219 ( 2001 ) .
  98. Capmany, J., Pastor, D. & Ortega, B. New and compromising fiber-optic delay occupation filters using chirped Bragg gratings and laser arrays. IEEE Trans. Microwave Theory Tech. 47, 1321–1327 ( 1999 ) .
  99. Popov, M., Fonjallaz, P. Y. & Gunnarson, O. Compact microwave photonic cross filter with 40 dB sidelobe suppression. IEEE Photon. Technol. Lett. 17, 663–665 ( 2005 ) .
  100. pastor, D., Capmany, J. & Ortega, B. Broad-band tunable microwave cross notch trickle based on tunable uniform fiber Bragg gratings as slicing filters. IEEE Photon. Technol. Lett. 13, 726–728 ( 2001 ) .
  101. Mora, J. et alabama. Automatic tunable and reconfigurable fiber-optic microwave filters based on a broadband ocular generator sliced by undifferentiated roughage Bragg gratings. Opt. Express 10, 1291–1298 ( 2002 ) .
  102. Capmany, J., Mora, J., Ortega, B. & Pastor, D. High-quality low-cost online-reconfigurable microwave photonic cross percolate with positive and negative coefficients. IEEE Photon. Technol. Lett. 17, 2730–2732 ( 2005 ) .
  103. Sales, S., Capmany, J., Martí, J. & Pastor, D. Experimental demonstration of fiber-optic delay channel filters with minus coefficients. Electron. Lett. 31, 1095–1096 ( 1995 ) .
  104. Coppinger, F., Yegnanarayanan, S., Trinh, P. D. & Jalali, B. All-optical RF filter using amplitude inversion in a SOA. IEEE Trans. Microwave Theory Tech. 45, 1473–1477 ( 1997 ) .
  105. Capmany, J., Pastor, D., Martinez, A., Ortega, B. & Sales, S. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator. Opt. Lett. 28, 1415–1417 ( 2003 ) .
  106. Loayssa, A., Capmany, J., Sagues, M. & Mora, J. Demonstration of incoherent microwave photonic filters with all-optical building complex coefficients. IEEE Photon. Technol. Lett. 18, 1774–1776 ( 2006 ) .
  107. Chan, E. H. W. & Minasian, R. A. Photonic notch percolate without ocular coherence limitations. J. Lightwave Technol. 22, 1811–1817 ( 2004 ) .
  108. Ortega, B., Mora, J., Capmany, J., Pastor, D. & Garcia-Olcina, R. Highly selective microwave photonic filters based on an active optical recirculating cavity and tuned modulator loanblend structure. Electron. Lett. 41, 1133–1135 ( 2005 ) .
  109. Xiao, S. & Weiner, A. M. Coherent photonic march of microwave signals using spatial light modulators : Programmable amplitude filters. J. Lightwave Technol. 24, 2523–2529 ( 2006 ) .
  110. Walden, R. H. Analog-to-digital converter sketch and analysis. IEEE J. Sel. Areas Commun. 17, 539–550 ( 1999 ) .
  111. Takara, H., Kawanishi, S., Morioka, T., Mori, K. & Saruwatari, M. 100 Gbit/s ocular wave form measurement with 0.6 ps settlement optical sampling subpicosecond supercontinuum pulses. Electron. Lett. 30, 1152–1154 ( 1994 ) .
  112. Jalali, B. & Xie, Y. M. Optical folding-flash analog-to-digital converter with analogue encoding. Opt. Lett. 20, 1901–1903 ( 1995 ) .
  113. Frankel, M. Y., Kang, J. U. & Esman, R. D. High-performance photonic analogue-digital converter. Electron. Lett. 33, 2096–2097 ( 1997 ) .
  114. Juodawlkis, P. W. et aluminum. 505-MS/s photonic analog-to-digital converter. Dig. Conf. Lasers Electro-opt. Baltimore, Maryland, USA 63–64 ( 2001 ) .
  115. Clark, T. R. & Dennis, M. L. Toward a 100-Gsample/s photonic A-D converter. IEEE Photon. Technol. Lett. 13, 236–238 ( 2001 ) .
  116. Coppinger, F., Bhushan, A. S. & Jalali, B. Photonic time stretch and its lotion to analog-to-digital conversion. IEEE Trans. Microwave Theory Tech. 49, 1840–1853 ( 2001 ) .
  117. Han, Y. & Jalali, B. Photonic time-stretched analog-to-digital converter : fundamental concepts and hardheaded considerations. J. Lightwave Technol. 21, 3085–3103 ( 2003 ) .
  118. Han, Y. & Jalali, B. Time-bandwidth intersection of the photonic time-stretched analog-to-digital converter. IEEE Trans. Microwave Theory Tech. 51, 1886–1892 ( 2003 ) .
  119. Fuster, J. M., Novak, D., Nirmalathas, A. & Marti, J. Single sideband modulation in photonic time-stretch analogue-to-digital conversion. Electron. Lett. 37, 67–68 ( 2001 ) .
  120. Han, Y., Boyraz, O. & Jalali, B. Ultrawide-band photonic time extend A/D converter employing phase diverseness. IEEE Trans. Microwave Theory Tech. 53, 1404–1408 ( 2005 ) .
  121. Valley, C., Photonic analog-to-digital converters, Opt. Express 15, 1955–1982 ( 2007 ) .
  122. Chou, J., Boyraz, O. & Jalali, B. Femtosecond real-time single-shot digitizer, Proc. Meeting Am. Phys. Soc. Baltimore, Maryland, USA ( 2006 ) .
  123. Workshop on ultrafast analog-to-digital ( A/D ) converters., Proc. IEEE MTT-S Int. Microwave Symp. ( 2004 ) .
  124. Jalali, B., Kelvar, P. & Saxena, V. in Proc. IEEE LEOS Ann. Meeting. La Jolla, California, USA 253 ( 2001 ) .
  125. Yilmaz, T., DePriest, C. M., Turpin, T., Abeles, J. H. & Delfyett, P. J. Toward a photonic arbitrary wave form generator using modelocked external cavity semiconductor laser. IEEE Photon. Technol. Lett. 14, 1608–1610 ( 2002 ) .
  126. McKinney, J. D., Leaird, D. E. & Weiner, A. M. Millimeter-wave arbitrary wave form genesis with a direct space-to-time pulse maker. Opt. Lett. 27, 1345–1347 ( 2002 ) .
  127. McKinney, J. D., Seo, D. S. & Weiner, A. M. Photonically assisted coevals of continuous arbitrary millimeter electromagnetic waveforms. Electron. Lett. 39, 309–310 ( 2003 ) .
  128. McKinney, J. D., Seo, D., Leaird, D. E. & Weiner, A. M. Photonically assisted coevals of arbitrary millimeter-wave and microwave electromagnetic waveforms via target space-to-time optical pulse shape. IEEE J. Lightwave Technol. 21, 3020–3028 ( 2003 ) .
  129. Xiao, S., McKinney, J. D. & Weiner, A. M. Photonic microwave arbitrary wave form genesis using a virtually-imaged phased-array ( VIPA ) direct space-to-time pulse shapers. IEEE Photon. Technol. Lett. 16, 1936–1938 ( 2004 ) .
  130. Chou, J., Han, Y. & Jalali, B. Adaptive RF-Photonic arbitrary wave form generator. IEEE Photon. Technol. Lett. 15, 581–583 ( 2003 ) .
  131. Lin, I. S., McKinney, J. D. & Weiner, A. Photonic deduction of broadband microwave arbitrary waveforms applicable to ultra-wideband communication. IEEE Microwave Wireless Compon. Lett. 15, 226–228 ( 2005 ) .
  132. Torres-Company, V., Lancis, J. & Andrés, P. Arbitrary wave form generator based on all-incoherent pulsation shape. IEEE Photon. Technol. Lett. 18, 2626–2628 ( 2006 ).
  133. Levinson, O. & Horowitz, M. Generation of complex microwave and millimeter-wave pulses using dispersion and Kerr consequence in ocular character systems. J. Lightwave Technol. 21, 1179–1187 ( 2003 ) .
  134. McKinney, J. D. & Weiner, A. M. Compensation of the effects of antenna dispersion on UWB waveforms via ocular pulse-shaping techniques. IEEE Trans. Microwave Theory Tech. 54, 1681–1685 ( 2006 ) .
  135. Bortnik, B., Poberezhskiy, I., Chou, J., Jalali, B. & Fetterman, H. Predistortion technique for RF-photonic genesis of high-power ultrawideband arbitrary waveforms. J. Lightwave Technol. 24, 2752–2759 ( 2006 ) .